edexcel 흧

Mark Scheme (Results)

Summer 2016

Pearson Edexcel GCE

in Chemistry (6CH02) Paper 01 Application of Core Principles of Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016
Publications Code 46658_MS*
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- \quad All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1}$	C		$\mathbf{(1)}$

Question Number	Correct Answer	Reject	Mark
2(a)	B		(1)

Question Number	Correct Answer	Reject	Mark
2(b)	D		(1)

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 (c)}$	B		$\mathbf{(1)}$

Question Number	Correct Answer	Reject	Mark
2(d)	A		(1)

Question Number	Correct Answer	Reject	Mark
$\mathbf{3}$	B		(1)

Question Number	Correct Answer	Reject	Mark
$\mathbf{4 (a)}$	D		(1)

Question Number	Correct Answer	Reject	Mark
4(b)	A		(1)

Question Number	Correct Answer	Reject	Mark
4(c)	B		(1)

Question Number	Correct Answer	Reject	Mark
4(d)	C		(1)

Question Number	Correct Answer	Reject	Mark
$\mathbf{5}$	C		$\mathbf{(1)}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{6 (a)}$	A		(1)

Question Number	Correct Answer	Reject	Mark
$\mathbf{6 (b)}$	C		$\mathbf{(1)}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{7}$	D		$\mathbf{(1)}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{8}$	C		(1)

9	C		(1)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 0 (a)}$	D		(1)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 0 (b)}$	D		(1)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 1}$	B		(1)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 2}$	B		(1)

Total for Section A = $\mathbf{2 0}$ marks

Section B

Question Number	Acceptable Answers	Reject	Mark	
$\mathbf{1 3 (a) (i)}$	Ignore drawn shapes	(1)	Shape is trigonal planar/ triangular planar planar	(1)

Question Number	Correct Answer	Reject	Mark
13(a)(iii)	M1 OR OR Dot and cross diagram, allow all dots or crosses. IGNORE omission of non-bonding electrons on Fs. But no mark if dot and cross shown for $\mathrm{N}-\mathrm{B}$ bond. M2 Dative covalent (bond) Mark independently	No M1 if dative bond categorically from B to N	(2)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 3 (b) (i) ~}$	+2 ALLOW $2+$		(1)

Question Number	Correct Answer	Reject	Mark		
$\mathbf{1 3 (b) (i i)}$	$\mathrm{OF}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HF}+\mathrm{O}_{2}$				
Ignore state symbols even if incorrect					
Allow multiples				$\quad \mathrm{H}_{2} \mathrm{~F}_{2}$	(1)
:---					

| Question |
| :--- | :--- | :--- | :--- | :--- |
| Number | Correct Answer \quad Reject \quad Mark

(Total for Question 13 = 11 marks)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 4 (a) (i)}$	As a (co-)solvent for both aqueous silver nitrate and bromoalkane OR As a (co-)solvent for polar and non-polar molecules OR To dissolve the halogenoalkane (as it is not water soluble) OR To allow the reagents/reactants to mix/dissolve	(1)	

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 4 (a) (i i)}$	$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}+\mathrm{HBr}$		(1)
	OR		
	$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}+\mathrm{H}^{+}+\mathrm{Br}^{-}$ Ignore state symbols even if incorrect		

Question Number	Correct Answer	Reject	Mark	
$\mathbf{1 4 (a) (\text { iii) }}$	Cream		Just "yellow" Just "white"	(2)
	ALLOw	(1)		
	Pale yellow/off-white			
	$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgBr}(\mathrm{s})$	(1)		

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 4 (a) (i v)}$	Concentrated ammonia (solution) / Concentrated $\mathrm{NH}_{3}((\mathrm{aq}))$		(1)
	ALLOW 'c' or 'conc' for concentrated IGNORE References to "excess"		

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 4 (a) (v)}$	C, B, A		$\mathbf{1}$
	NOTE The letters must be in this order		

Question Number	Correct Answer	Reject	Mark
*14(a)(vi)	Any two from - Tertiary is the fastest / primary is the slowest - The $\mathrm{C}-\mathrm{Br}$ bond is weakest in 2-methylbromopropane / in the tertiary (compound) ALLOW here: The weaker the $\mathrm{C}-\mathrm{Br}$ bond, the faster the hydrolysis - (This is because the) methyl groups donate electrons OR methyl groups are electron releasing OR (positive) inductive effect of methyl groups I GNORE Any resultant effect on the polarity of the $\mathrm{C}-\mathrm{Br}$ bond, even if incorrect - Tertiary carbocation OR intermediate formed by tertiary is (more) stable ALLOW branched for tertiary in all points I GNORE Any references to steric hindrance Any references to $\mathrm{S}_{\mathrm{N}} 1$ and/or $\mathrm{S}_{\mathrm{N}} 2$	If states that tertiary bromoalkane dissolves fastest	(2)

Question Number	Correct Answer	Reject	Mark
14(b)(i)	M1: All three of the following points - (Cotton) wool / mineral wool / ceramic fibre (soaked in reactant) - in a reasonably horizontal test tube - heating (shown anywhere under horizontal tube) M2: Collection of gas over water / in a gas syringe Ignore Bunsen valve Mark these scoring points independently		(2)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 4 (b) (i i)}$	But-1-ene		Butene
	ALLOW	Butan-1-ene	
	1-butene	(1)	Butanene
		(1)	

Question Number	Correct Answer	Reject	Mark	
$\mathbf{1 4 (c) (i)}$	(Type) substitution	(1)	Elimination	(2)
	(Mechanism) nucleophilic	(1)	Electrophilic / (free) radical	
	Allow words in either order		$\mathrm{S}_{N} 1$	

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 4 (c) (i i)}$	Butylamine/1-aminobutane/1-butylamine		(1)

(Total for Question 14 = 15 marks)

Question Number	Correct Answer	Reject	Mark
15(a)	M1: The salt dissolves in the water (of crystallization) / the salt dissolves in (its) water of crystallization NOTE: For M1 it needs to be clear that the water came from the initial solid M2: Water boils/water evaporates M3: (Anhydrous) magnesium nitrate $/ \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ crystallizes OR (Anhydrous) magnesium nitrate $/ \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ is formed ALLOW for M3: (White) solid formed as the concentration becomes too high / as water is driven off OR Solid reforms/forms	Any mention of 'melt(s)'	(3)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 5 (b) (i)}$	NOTE 1: The chemicals identified MUST correspond to the correct Stage number NOTE 2: Award mark in each case for either the correct name or the correct formula. HOWEVER if both a name AND a formula are given, BOTH must be correct. Stage 5: Nitrogen dioxide / $\mathrm{NO}_{2} / \mathrm{N}_{2} \mathrm{O}_{4}$ (is the brown gas) Stage 6: Oxygen / O2 (relights a glowing splint) (1) Stage 7: Magnesium oxide / MgO (is the white solid)	Just "O" for oxygen's formula	

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 5 (b) (i i)}$	$2 \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{MgO}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}+12 \mathrm{H}_{2} \mathrm{O}$ Ignore state symbols even if incorrect		(2)
	ALLOW multiples ALLOW $2 \mathrm{~N}_{2} \mathrm{O}_{4}$ for $4 \mathrm{NO}_{2}$ M1 Correct entities (1) M2 Balancing (1) M2 depends on M1 Special case If the anhydrous salt equation is given: $2 \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow 2 \mathrm{MgO}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}$ scores 1 max		

Question Number	Correct Answer	Reject	Mark	
$\mathbf{1 5 (c) (i)}$	(Magnesium chloride) Colourless / no colour	(1)	UV/white/bright white	(2)
	(Calcium chloride) Yellow-red OR brick-red OR red ALLOw Orange-red	(1)	Crimson Just 'orange'	

Question Number	Correct Answer	Reject	Mark
*15(c)(ii)	M1 - for idea of electrons being promoted (Heating) promotes electrons / excites electrons (to higher energy levels)	Just molecules gain energy	(3)
	M2 - for idea of electrons falling back down Electrons fall back (to lower levels / ground states)	M3 - for idea of emission of light Emitting (visible) light / emitting photons	No M3 if mention of energy / light absorbed

Question Number	Correct Answer	Reject	Mark
15(c)(iii)	M1:		(2)
	EITHER		
	In magnesium the energy levels are further apart / the energy levels are different	J ust "no transitions for magnesium"	
	OR		
	In calcium the energy levels are closer / the energy levels are different		
	IGNORE		
	Any comparison of the relative numbers of energy levels		
	M2:		
	For magnesium, the energy released is outside the visible spectrum / visible region		
	OR		
	For calcium, the energy released is inside the visible spectrum / visible region		
	OR		
	the energy released is in the red region (of the spectrum)		
	OR		
	Different amounts of energy are released		
	Different frequencies / wavelengths emitted		
	(1)		
	Mark these points independently		

(Total for Question 15 = 15 marks)
Total for Section B = 41 marks

Section C

Question Number	Correct Answer	Reject	Mark
16(a)(i)		Skeletal / structural formulae	(1)

Question Number	Correct Answer	Reject	Mark
16(a)(ii)	Read the whole answer first Any two from - (Higher boiling temperature) because it has stronger/more London forces - (Because it has) more electrons (66 compared with 50) IGNORE References to larger electron cloud / higher electron density / greater M_{r} / incorrect 'counting' of electrons in either or both molecules - 1,1,1-trichloroethane has dipole-dipole interactions - (Because the molecule is polar due to) polar C-Cl bonds OR - Cl is more electronegative than C OR Cl is more electronegative than H OR Cl atoms on same side (of molecule) OR C-Cl dipoles do not cancel - Hexane has only London forces	Any reference to breaking covalent bonds scores (0) overall	(2)

Question Number	Correct Answer	Reject	Mark
16(a)(iii)	Because they damage the ozone layer OR (Halothane products like) 1,1,1-trichloroethane are narcotic inhalants / poisonous / toxic IGNORE References to just: - formation of chlorine radicals - formation of Cl• - carcinogen	Any statement that this compound is a CFC / forms Cl_{2} (on breaking down)	(1)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 6 (b) (i)}$	ICl is a stronger electrophile / better electrophile Allow a correct description of an electrophile even if the term is not used. e.g. ICI has a vacancy for a bonding pair of electrons OR Any references to Cl attacking the C=C	(1)	
	NOTE: ALLOW the ICI (bond) is more polar OR Mention of presence of the I ${ }^{\delta+}$ (in ICI) ALLOW 'It' for ICl		

Question Number	Correct Answer	Reject	Mark
16(b)(ii)	 I and Cl can be interchanged and on either side Look out for only I or Cl added without hydrogen, also 2I and 2 Cl added.	I and Cl on the same carbon	(1)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 6 (b) (i i i)}$	To prevent formation of free radicals	Causes oxidation	(1)
	OR OR prevent (free radical) substitution OR prevent (I-CI) bonds breaking homolytically ALLOW UV causes it to react / to decompose IGNORE light causes it to react / to decompose		

Question Number	Correct Answer	Reject	Mark
16(b)(iv)	ALL THREE oxidation numbers must be correct: (Iodine monochloride) +1 ALLOW 1+ (Iodide ion) -1 ALLOW 1- (Iodine) 0 (Ionic equation) $\mathrm{ICl}+\mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+\mathrm{Cl}^{-}$ Ignore state symbols even if incorrect Both partial and full charges on ICl are acceptable, provided they are the right way around		(2)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 6 (c)}$	(Indicator)	(1)	
	Starch (solution) (Colour change from) Blue-black to colourless ALLOW Blue to colourless OR Black to colourless IGNORE References to 'clear'	No M2 if states "From purple to ..."	
Mark independently			

In 16(d) penalise incorrect units once only

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 6 (d) (i)}$	Number of moles of thiosulfate $=$		$\mathbf{(1)}$
	$\frac{20.0 \times 0.100}{1000}=2(.00) \times 10^{-3} / 0.002(00)$		

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 6 (d) (i i)}$	$\left(2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq}) \rightarrow\right) \quad \mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}+2 \mathrm{I}^{-}$ IGNORE state symbols even if incorrect		(1)

ALLOW TE in all remaining parts from the previous part(s) Calculators needed!
PENALI SE rounding errors in (d)(v) to (d)(vii) only once
Also penalise 1 SF in (d)(v) to (d)(vii) only once

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 6 (d) (i i i)}$	Number of moles of iodine $=0.002(00) \div 2$ $=1(.00) \times 10^{-3} / 0.001(00)(\mathrm{mol})$	(1)	

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 6 (d) (i v) ~}$	$1(.00) \times 10^{-3} / 0.001(00)(\mathrm{mol})$		(1)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 6 (d) (v)}$	$(0.001(00)-0.000365)$ $=6.35 \times 10^{-4} / 0.000635(\mathrm{~mol})$		(1)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 6 (d) (v i)}$	$(0.000635 \times 100$ $=0.2(00)$ $=0.3175(\mathrm{~mol})$	$0.000635 \times 500)$	(1)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 6 (d) (v i i)}$	$0.3175 \times 2 \times 126.9=80.5815(\mathrm{~g})$ If student uses $\mathrm{A}_{\text {r for }} \mathrm{I}=127$, final answer equals $80.645(\mathrm{~g})$		(1)

If $d(i i i) /(i v)$ is 0.002 this gives $0.001635,0.8175$ and 207.4815 for (v) to (vii)
If d (iii)/(iv) is 0.0005 this gives $0.000135,0.0675$ and 17.1315 for (v) to (vii)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 6 (e)}$	(Sample titre) Higher and (Iodine value) Lower	$\mathbf{1}$	

(Total for Section C = 19 Marks)
TOTAL FOR PAPER $=\mathbf{8 0}$ MARKS

